The Function of SARI in Modulating Epithelial-Mesenchymal Transition and Lung Adenocarcinoma Metastasis
نویسندگان
چکیده
The SARI (suppressor of AP-1, regulated by IFN) gene, which is also called BATF2, is associated with the risk of several kinds of cancer, and loss of SARI expression is frequently detected in aggressive and metastatic cancer. However, the functional role of SARI in lung adenocarcinoma remains unknown. We have shown that loss of SARI expression initiates epithelial-mesenchymal transition (EMT), which is visualized by repression of E-cadherin and up-regulation of vimentin in lung adenocarcinoma cell lines and in clinical lung adenocarcinoma specimens. Using a human lung xenograft-mouse model, we observed that knocking down endogenous SARI in human carcinoma cells leads to the development of multiple lymph node metastases. Moreover, we showed that SARI functions as a critical protein in regulating EMT by modulating the (GSK)-3β-β-catenin signaling pathway. These results demonstrate the mechanism of SARI function in EMT and suggest that assessment of SARI may serve as a prognostic biomarker and potential therapeutic target for lung adenocarcinoma metastasis.
منابع مشابه
Epithelial to mesenchymal transition concept in Cancer: Review article
Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملThe role of microRNA-30a and downstream snail1 on the growth and metastasis of melanoma tumor
Objective(s): Growing evidences have indicated microRNAs as modulators of tumor development and aggression. On the other hand, a phenomenon known as epithelial-mesenchymal transition (EMT) that indicates a transient phase from epithelial-like features to mesenchymal phenotype is a key player in tumor progression. In this study, we aimed to assess the potential impacts...
متن کاملGoosecoid Promotes the Metastasis of Hepatocellular Carcinoma by Modulating the Epithelial-Mesenchymal Transition
The homeobox gene, goosecoid (GSC), is a transcription factor that participates in cell migration during embryonic development. Because cell migration during development has characteristics similar to cell invasion during metastasis, we evaluated the potential role of GSC in the metastasis of hepatocellular carcinoma (HCC). GSC expression in HCC cell lines and tissues was evaluated, and its eff...
متن کاملSOX5 predicts poor prognosis in lung adenocarcinoma and promotes tumor metastasis through epithelial-mesenchymal transition
Lung cancer is the leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) promotes lung cancer progression and metastasis, especially in lung adenocarcinoma. Sex determining region Y-box protein 5 (SOX5) is known to stimulate the progression of various cancers. Here, we used immunohistochemical analysis to reveal that SOX5 levels were increased in 90 lung adeno...
متن کامل